SuperDrive背后的“思考”:如何让智驾决策更像老司机

什么样的智能驾驶能被称为老司机?首先来看一些SuperDrive在城市中的行驶片段——

从以上场景的自动驾驶行为可以看到,SuperDrive系统已经具备一个老练司机的开车本能。例如,当遇到骑行人或行人主动避让、等待车辆先行时,它会果决判断、不犹豫地行驶过去,而不是僵硬地只满足行人先行的约束条件(为了安全);直行遇到左转高频场景,在判定拥有路权的时候SuperDrive会选择径直过去,而不会像其他系统一样踌躇;及时检测到前方占道车辆然后减速绕行,整个绕行路径优雅从容,让驾驶者获得如同自己正常驾驶一样的体验,并且有效避免了当识别到前方占道车辆减速刹停时,无法主动绕行最终被迫接管的窘境。

SuperDrive想要做的,就是能够平顺地处理很多场景(优雅),不会仅为了安全而不去做一些人会做的博弈行为(不怂),并且能够感知到车的状态,像人一样在一个相对长的时间周期里通过思考明白要如何去行动,而不会很犹豫、纠结,出现方向盘无目的地乱摆导致车身不明所以地摇晃等(从容笃定),可谓谋定而后动。

其背后,有两大技术支撑。一个是让智驾系统“看”得更明白的“端到端感知架构”;另一个是让智驾系统“想”得清楚的“交互式博弈算法”。后者作为整个智驾系统的决策规划核心,最主要的是为高阶智驾提供了一种思维路径,而非一种设计定式。在实现端到端感知的基础上,SuperDrive系统还需要具备超强的博弈能力,才能针对复杂多元的城区场景以及中国式交通参与者,实现“优雅不怂,从容笃定”。

SuperDrive的整个规控系统的输入拥有Tensor级别的先验和实时结果,凭借着系统内的搜索模块,在大量数据和可能性中寻找最优解或相关信息,同时考虑时间和空间因素,根据输入数据和推理结果,生成物体或事件随着时间和空间变化的轨迹,然后做出预测或决策,制定运动规划,最终控制车子做出相应的驾驶行为。

地平线认为,上述所有的处理过程都会有一个交互式预测决策神经网络的Core,能够让系统真正的实现交互式博弈,整个推理过程最重要的是输出Plan/Prediction Pairs,包含自车和他车的,这样才能更准确的给出是抢还是让的决策,且这一过程并不是一次性的,而是所有可能性在每一个“Planning Cycle”里能够调用推演,这能使得系统能够真的像人一样在“反复博弈、寻求最优解”,而不是单向从A问题到B结论般的直白、僵硬。

但当输入的信息超越了过往的“经验”,系统则能够自行做出交互式思考和判断,从而生成合理的驾驶行为,整体的交互博弈,能够反复迭代、推演、强化,在不断的进化中,离“更拟人”无穷近。这相对于之前串行预测决策的规控有着很大的区别。

在目前的应用试验中,除了本节上述的场景外,地平线SuperDrive在面对施工区避让、城市环岛通行、路口交互-动态Driveline、效率变道、拥堵变道、拥堵汇流等城市典型场景时,均能够给用户带来优雅不怂的智能驾乘体验。典型动态现场案例如下:

梦幻西游:梦幻中对应81难的任务有哪些
小红书品牌推广价格策略分析:为何成为种草经济的佼佼者?